Difference between revisions of "Function Conjunction"

From S.H.O.
Jump to: navigation, search
 
(41 intermediate revisions by the same user not shown)
Line 1: Line 1:
<center>Choose an '''independent variable''' by choosing a '''row label'''!
+
{{#seo:
 +
|title=Function Conjunction @ Sho Drives Wiki
 +
|titlemode=replace
 +
|keywords=electricity,magnetism,motor,generator
 +
|description=To facilitate understanding of the S.H.O. Drive, this place catalogs the ideas, creations, and techniques underlying its invention.
 +
}}
  
Choose a '''dependent variable''' by choosing a '''column label'''!
+
To facilitate understanding of the S.H.O. Drive, this '''Function Conjunction''' will catalog the ideas, creations, and techniques underlying its invention.
  
Click the '''cell (or conjunction)''' to see the what's the '''function'''!
+
'''[[Magnetic Energy]]'''
  
<div style="direction: rtl; overflow-y: scroll; width: 1150px">
+
: The Magnetic Energy is the energy existing in magnetic fields.
{| class="wikitable" style="direction: ltr"
+
 
|+
+
'''[[The Anatomy of a Physical Expression]]'''
|-
+
 
! scope="col" width="50" |
+
: A physical expression is a product of factors, each with their own distinct role in defining a property of a physical system. Types include constants, coefficients, quantities, proximities, dislocations, and directions.
! scope="col" width="30" | A
+
 
! scope="col" width="30" | B
+
'''[[Functions composed of Physical Expressions]]'''
! scope="col" width="30" | C
+
 
! scope="col" width="30" | D
+
: A function composed of physical expressions is simply the result of the summations, differences, exponentiations, logarithms, or distributed multiplications or divisions of these physical expressions, or in the simplest case, a function is simply equal to an expression, such as <math>E(m) = mc^2</math>, where <math>E</math> is a function of <math>m</math>.
! scope="col" width="30" | E
+
 
! scope="col" width="30" | F
+
'''[[Electromagnetic Potentials]]'''
! scope="col" width="30" | G
+
 
! scope="col" width="30" | H
+
: The basic idea here is that the electromagnetic potentials <math>\phi</math> and <math>A</math> and their derivatives can be used to derive all electromagnetism.
! scope="col" width="30" | I
+
 
! scope="col" width="30" | J
+
{{Site map}}
! scope="col" width="30" | K
+
 
! scope="col" width="30" | L
+
[[Category:Function Conjunction| ]]
! scope="col" width="30" | M
+
! scope="col" width="30" | N
+
! scope="col" width="30" | O
+
! scope="col" width="30" | P
+
! scope="col" width="30" | Q
+
! scope="col" width="30" | R
+
! scope="col" width="30" | S
+
! scope="col" width="30" | T
+
! scope="col" width="30" | U
+
! scope="col" width="30" | V
+
! scope="col" width="30" | W
+
! scope="col" width="30" | X
+
! scope="col" width="30" | Y
+
! scope="col" width="30" | Z
+
|}
+
</div>
+
<div style="direction: rtl; overflow-y: auto; height: 300px; width: 1150px">
+
{| class="wikitable" style="direction: ltr"
+
|+
+
|-
+
! scope="row" height="30" | aα
+
||  ||B(a)||C(a)||  ||  ||  ||
+
||  ||  ||  ||  ||  ||  ||
+
||  ||  ||  ||  ||  ||  ||
+
||  ||  ||  ||  || 
+
|-
+
! scope="row" height="30" | bβ
+
||A(b)||  ||C(b)||  ||  ||  ||
+
||  ||  ||  ||  ||  ||  ||
+
||  ||  ||  ||  ||  ||  ||
+
||  ||  ||  ||  || 
+
|-
+
! scope="row" height="30" | cχ
+
||A(c)||B(c)||  ||  ||  ||  ||
+
||  ||  ||  ||  ||  ||  ||
+
||  ||  ||  ||  ||  ||  ||
+
||  ||  ||  ||  || 
+
|-
+
! scope="row" height="30" | dδ
+
||  ||  ||  ||  ||  ||  ||
+
||  ||  ||  ||  ||  ||  ||
+
||  ||  ||  ||  ||  ||  ||
+
||  ||  ||  ||  || 
+
|-
+
! scope="row" height="30" | eεη
+
||  ||  ||  ||  ||  ||  ||
+
||  ||  ||  ||  ||  ||  ||
+
||  ||  ||  ||  ||  ||  ||
+
||  ||  ||  ||  || 
+
|-
+
! scope="row" height="30" | f
+
||  ||  ||  ||  ||  ||  ||
+
||  ||  ||  ||  ||  ||  ||
+
||  ||  ||  ||  ||  ||  ||
+
||  ||  ||  ||  || 
+
|-
+
! scope="row" height="30" | gγ
+
||  ||  ||  ||  ||  ||  ||
+
||  ||  ||  ||  ||  ||  ||
+
||  ||  ||  ||  ||  ||  ||
+
||  ||  ||  ||  || 
+
|-
+
! scope="row" height="30" | h
+
||  ||  ||  ||  ||  ||  ||
+
||  ||  ||  ||  ||  ||  ||
+
||  ||  ||  ||  ||  ||  ||
+
||  ||  ||  ||  || 
+
|-
+
! scope="row" height="30" | iι
+
||  ||  ||  ||  ||  ||  ||
+
||  ||  ||  ||  ||  ||  ||
+
||  ||  ||  ||  ||  ||  ||
+
||  ||  ||  ||  || 
+
|-
+
! scope="row" height="30" | j
+
||  ||  ||  ||  ||  ||  ||
+
||  ||  ||  ||  ||  ||  ||
+
||  ||  ||  ||  ||  ||  ||
+
||  ||  ||  ||  || 
+
|-
+
! scope="row" height="30" | kκ
+
||  ||  ||  ||  ||  ||  ||
+
||  ||  ||  ||  ||  ||  ||
+
||  ||  ||  ||  ||  ||  ||
+
||  ||  ||  ||  || 
+
|-
+
! scope="row" height="30" | lλ
+
||  ||  ||  ||  ||  ||  ||
+
||  ||  ||  ||  ||  ||  ||
+
||  ||  ||  ||  ||  ||  ||
+
||  ||  ||  ||  || 
+
|-
+
! scope="row" height="30" | mμ
+
||  ||  ||  ||  ||  ||  ||
+
||  ||  ||  ||  ||  ||  ||
+
||  ||  ||  ||  ||  ||  ||
+
||  ||  ||  ||  || 
+
|-
+
! scope="row" height="30" | nμ
+
||  ||  ||  ||  ||  ||  ||
+
||  ||  ||  ||  ||  ||  ||
+
||  ||  ||  ||  ||  ||  ||
+
||  ||  ||  ||  || 
+
|-
+
! scope="row" height="30" | oοω
+
||  ||  ||  ||  ||  ||  ||
+
||  ||  ||  ||  ||  ||  ||
+
||  ||  ||  ||  ||  ||  ||
+
||  ||  ||  ||  || 
+
|-
+
! scope="row" height="30" | pπφψ
+
||  ||  ||  ||  ||  ||  ||
+
||  ||  ||  ||  ||  ||  ||
+
||  ||  ||  ||  ||  ||  ||
+
||  ||  ||  ||  || 
+
|-
+
! scope="row" height="30" | q
+
||  ||  ||  ||  ||  ||  ||
+
||  ||  ||  ||  ||  ||  ||
+
||  ||  ||  ||  ||  ||  ||
+
||  ||  ||  ||  || 
+
|-
+
! scope="row" height="30" | rρ
+
||  ||  ||  ||  ||  ||  ||
+
||  ||  ||  ||  ||  ||  ||
+
||  ||  ||  ||  ||  ||  ||
+
||  ||  ||  ||  || 
+
|-
+
! scope="row" height="30" | sσς
+
||  ||  ||  ||  ||  ||  ||
+
||  ||  ||  ||  ||  ||  ||
+
||  ||  ||  ||  ||  ||  ||
+
||  ||  ||  ||  || 
+
|-
+
! scope="row" height="30" | tθτ
+
||  ||  ||  ||  ||  ||  ||
+
||  ||  ||  ||  ||  ||  ||
+
||  ||  ||  ||  ||  ||  ||
+
||  ||  ||  ||  || 
+
|-
+
! scope="row" height="30" | uυ
+
||  ||  ||  ||  ||  ||  ||
+
||  ||  ||  ||  ||  ||  ||
+
||  ||  ||  ||  ||  ||  ||
+
||  ||  ||  ||  || 
+
|-
+
! scope="row" height="30" | v
+
||  ||  ||  ||  ||  ||  ||
+
||  ||  ||  ||  ||  ||  ||
+
||  ||  ||  ||  ||  ||  ||
+
||  ||  ||  ||  || 
+
|-
+
! scope="row" height="30" | w
+
||  ||  ||  ||  ||  ||  ||
+
||  ||  ||  ||  ||  ||  ||
+
||  ||  ||  ||  ||  ||  ||
+
||  ||  ||  ||  || 
+
|-
+
! scope="row" height="30" | xξ
+
||  ||  ||  ||  ||  ||  ||
+
||  ||  ||  ||  ||  ||  ||
+
||  ||  ||  ||  ||  ||  ||
+
||  ||  ||  ||  || 
+
|-
+
! scope="row" height="30" | y
+
||  ||  ||  ||  ||  ||  ||
+
||  ||  ||  ||  ||  ||  ||
+
||  ||  ||  ||  ||  ||  ||
+
||  ||  ||  ||  || 
+
|-
+
! scope="row" height="30" | z
+
||  ||  ||  ||  ||  ||  ||
+
||  ||  ||  ||  ||  ||  ||
+
||  ||  ||  ||  ||  ||  ||
+
||  ||  ||  ||  || 
+
|-
+
! scope="col" width="50" |
+
! scope="col" width="30" | A
+
! scope="col" width="30" | B
+
! scope="col" width="30" | C
+
! scope="col" width="30" | D
+
! scope="col" width="30" | E
+
! scope="col" width="30" | F
+
! scope="col" width="30" | G
+
! scope="col" width="30" | H
+
! scope="col" width="30" | I
+
! scope="col" width="30" | J
+
! scope="col" width="30" | K
+
! scope="col" width="30" | L
+
! scope="col" width="30" | M
+
! scope="col" width="30" | N
+
! scope="col" width="30" | O
+
! scope="col" width="30" | P
+
! scope="col" width="30" | Q
+
! scope="col" width="30" | R
+
! scope="col" width="30" | S
+
! scope="col" width="30" | T
+
! scope="col" width="30" | U
+
! scope="col" width="30" | V
+
! scope="col" width="30" | W
+
! scope="col" width="30" | X
+
! scope="col" width="30" | Y
+
! scope="col" width="30" | Z
+
|}
+
</div>
+
</center>
+

Latest revision as of 19:22, 14 July 2017

To facilitate understanding of the S.H.O. Drive, this Function Conjunction will catalog the ideas, creations, and techniques underlying its invention.

Magnetic Energy

The Magnetic Energy is the energy existing in magnetic fields.

The Anatomy of a Physical Expression

A physical expression is a product of factors, each with their own distinct role in defining a property of a physical system. Types include constants, coefficients, quantities, proximities, dislocations, and directions.

Functions composed of Physical Expressions

A function composed of physical expressions is simply the result of the summations, differences, exponentiations, logarithms, or distributed multiplications or divisions of these physical expressions, or in the simplest case, a function is simply equal to an expression, such as [math]E(m) = mc^2[/math], where [math]E[/math] is a function of [math]m[/math].

Electromagnetic Potentials

The basic idea here is that the electromagnetic potentials [math]\phi[/math] and [math]A[/math] and their derivatives can be used to derive all electromagnetism.

Site map

HQGlossaryApril 2016 Presentation