Difference between revisions of "Function Conjunction"

From S.H.O.
Jump to: navigation, search
Line 1: Line 1:
==The Anatomy of a Physical Expression==
+
'''[[The Anatomy of a Physical Expression]]'''
  
<div style="overflow-x: auto">
+
: A physical expression is a product of factors, each with their own distinct role in defining a property of a physical system. Types include constants, coefficients, quantities, proximities, dislocations, and directions.
{| class="wikitable"
+
|-
+
! Constant
+
!rowspan=2|<math>\times</math>
+
! Coefficient
+
!rowspan=2|<math>\times</math>
+
! Quantity
+
!rowspan=2|<math>\times</math>
+
! Proximity
+
!rowspan=2|<math>\times</math>
+
! Dislocation
+
!rowspan=2|<math>\times</math>
+
! Direction
+
|-
+
|valign=top align=center| '''Examples:'''<br><math>\mu_0, \epsilon_0</math><br><math>k_B, \alpha, c</math><br>or<br><math>1</math>
+
|valign=top align=center| '''Examples:'''<br><math>\mu_r, \epsilon_r</math><br>or<br><math>1</math>
+
|valign=top align=center| '''Examples:'''<br><math>q,\lambda_q,\sigma_q,\rho_q</math><br><math>m,\rho</math><br>or<br><math>1</math>
+
|valign=top align=center| '''Examples:'''<br><math>\frac{1}{|\mathbf{r}-\mathbf{r'}|}, \frac{1}{|\mathbf{r}-\mathbf{r'}|^2}</math><br>or<br><math>1</math>
+
|valign=top align=center| '''Examples:'''<br><math>\mathbf{x}, \mathbf{v}, \mathbf{a}</math><br><math>\mathbf{r}, \frac{d\mathbf{r}}{dt}, \frac{d^2\mathbf{r}}{dt^2}</math><br><math>\mathbf{r'}, \frac{d\mathbf{r'}}{dt}, \frac{d^2\mathbf{r'}}{dt^2}</math><br>or<br><math>1</math>
+
|valign=top align=center| '''Examples:'''<br><math>\mathbf{\hat{x}}, \mathbf{\hat{v}}, \mathbf{\hat{a}}</math><br><math>\mathbf{\hat{r}},\mathbf{\hat{\dot{r}}},\mathbf{\hat{\ddot{r}}}</math><br><math>\mathbf{\hat{r'}},\mathbf{\hat{\dot{r'}}},\mathbf{\hat{\ddot{r'}}}</math><br>or<br><math>1</math>
+
|}
+
</div>
+
 
+
===Constants===
+
* <math>\mu_0</math> = Magnetic Permeability of Free Space
+
* <math>\epsilon_0</math> = Electric Permittivity of Free Space
+
* <math>k_B</math> = Boltzmann's constant
+
* <math>\alpha</math> = Fine Structure Constant
+
* <math>c</math> = Speed of Light
+
 
+
===Coefficients===
+
* <math>\mu_r</math> = Relative Magnetic Permeability of Free Space
+
* <math>\epsilon_r</math> = Relative Electric Permittivity of Free Space
+
 
+
===Quantities===
+
* <math>q</math> = point charge
+
* <math>\lambda_q</math> = linear charge density (for continuous charge)
+
* <math>\sigma_q</math> = surface charge density (for continuous charge)
+
* <math>\rho_q</math> = volume charge density (for continuous charge)
+
* <math>m</math> = mass
+
* <math>\rho</math> = volume mass density
+
 
+
===Proximities===
+
* <math>\frac{1}{|\mathbf{r}-\mathbf{r'}|}</math> = inverse of the magnitude of the separation between positions <math>\mathbf{r}</math> and <math>\mathbf{r'}</math>
+
* <math>\frac{1}{|\mathbf{r}-\mathbf{r'}|^2}</math> = inverse square of the magnitude of the separation between positions <math>\mathbf{r}</math> and <math>\mathbf{r'}</math>
+
 
+
===Dislocations===
+
* <math>\mathbf{\hat{x}}</math> = position
+
* <math>\mathbf{\hat{v}}</math> = velocity
+
* <math>\mathbf{\hat{a}}</math> = acceleration
+
* <math>\mathbf{r}</math> = position of a charge <math>q</math> at time <math>t</math>, when it receives a light signal from <math>q'</math> that was emitted earlier at time <math>t' = t - |\mathbf{r}-\mathbf{r'}|/c</math>
+
* <math>\frac{d\mathbf{r}}{dt}</math> = velocity of a charge <math>q</math> at time <math>t</math>, when it receives a light signal from <math>q'</math> that was emitted earlier at time <math>t' = t - |\mathbf{r}-\mathbf{r'}|/c</math>
+
* <math>\frac{d^2\mathbf{r}}{dt^2}</math> = acceleration of a charge <math>q</math> at time <math>t</math>, when it receives a light signal from <math>q'</math> that was emitted earlier at time <math>t' = t - |\mathbf{r}-\mathbf{r'}|/c</math>
+
* <math>\mathbf{r'}</math> = position a charge <math>q'</math> was at the retarded time <math>t' = t - |\mathbf{r}-\mathbf{r'}|/c</math>, when it emitted a light signal which has now reached <math>q</math> at position <math>\mathbf{r}</math> and time <math>t</math>
+
* <math>\frac{d\mathbf{r'}}{dt}</math> = velocity a charge <math>q'</math> was at the retarded time <math>t' = t - |\mathbf{r}-\mathbf{r'}|/c</math>, when it emitted a light signal which has now reached <math>q</math> at position <math>\mathbf{r}</math> and time <math>t</math>
+
* <math>\frac{d^2\mathbf{r'}}{dt^2}</math> = acceleration a charge <math>q'</math> was at the retarded time <math>t' = t - |\mathbf{r}-\mathbf{r'}|/c</math>, when it emitted a light signal which has now reached <math>q</math> at position <math>\mathbf{r}</math> and time <math>t</math>
+
 
+
===Directions===
+
* <math>\mathbf{\hat{x}}</math> = position unit vector
+
* <math>\mathbf{\hat{v}}</math> = velocity unit vector
+
* <math>\mathbf{\hat{a}}</math> = acceleration unit vector
+
* <math>\mathbf{\hat{r}}</math> = position unit vector of <math>q</math>
+
* <math>\mathbf{\hat{\dot{r}}}</math> = velocity unit vector of <math>q</math>
+
* <math>\mathbf{\hat{\ddot{r}}}</math> = acceleration unit vector of <math>q</math>
+
* <math>\mathbf{\hat{r'}}</math> = position unit vector of <math>q'</math>
+
* <math>\mathbf{\hat{\dot{r'}}}</math> = velocity unit vector of <math>q'</math>
+
* <math>\mathbf{\hat{\ddot{r'}}}</math> = acceleration unit vector of <math>q'</math>
+
  
 
==Functions Composed of Physical Expressions==
 
==Functions Composed of Physical Expressions==

Revision as of 22:22, 23 April 2016

The Anatomy of a Physical Expression

A physical expression is a product of factors, each with their own distinct role in defining a property of a physical system. Types include constants, coefficients, quantities, proximities, dislocations, and directions.

Functions Composed of Physical Expressions

Functions for a point charge [math]q'[/math]

The electric scalar potential [math]\mathbf{\varphi}[/math] at [math]\left(\mathbf{r},t\right)[/math] due to a point charge [math]q'[/math] at [math]\left(\mathbf{r'},t'\right)[/math] is:

[math]\mathbf{\varphi}\left(\mathbf{r},\mathbf{r'}\right) = \underset{constant}{\frac{q'}{4\pi\ \epsilon_0}} \times \underset{proximity}{\frac{1}{|\mathbf{r}-\mathbf{r'}|}}[/math]

The magnetic vector potential [math]A[/math] at [math]\left(\mathbf{r},t\right)[/math] due to a point charge [math]q'[/math] which had a velocity [math]\mathbf{v'}[/math] at [math]\left(\mathbf{r'},t'\right)[/math] is:

[math]\mathbf{A}\left(\mathbf{r},\mathbf{r'}\right) = \mathbf{\varphi}\left(\mathbf{r},\mathbf{r'}\right) \times \underset{constant}{\frac{1}{c^2}} \times \underset{dislocation}{\frac{d\mathbf{r'}}{dt}}[/math]

[math]\mathbf{A}\left(\mathbf{r},\mathbf{r'}\right) = \underset{constant}{\frac{\mu_0\ q'}{4\pi}} \times \underset{proximity}{\frac{1}{|\mathbf{r}-\mathbf{r'}|}} \times \underset{dislocation}{\frac{d\mathbf{r'}}{dt}}[/math]

Site map

HQGlossaryApril 2016 Presentation