Difference between revisions of "Functions composed of Physical Expressions"

From S.H.O.
Jump to: navigation, search
(Lorentz Force for (q,q'))
Line 6: Line 6:
 
<math>\mathbf{\varphi}\left(\mathbf{r},\mathbf{r'}\right) = \underset{constant}{\frac{q'}{4\pi\ \epsilon_0}} \times \underset{proximity}{\frac{1}{|\mathbf{r}-\mathbf{r'}|}}</math>
 
<math>\mathbf{\varphi}\left(\mathbf{r},\mathbf{r'}\right) = \underset{constant}{\frac{q'}{4\pi\ \epsilon_0}} \times \underset{proximity}{\frac{1}{|\mathbf{r}-\mathbf{r'}|}}</math>
  
The magnetic vector potential <math>A</math> at <math>\left(\mathbf{r},t\right)</math> due to a point charge <math>q'</math> which had a velocity <math>\frac{d\mathbf{r'}}{dt}</math> at <math>\left(\mathbf{r'},t'\right)</math> is:
+
The magnetic vector potential <math>A</math> at <math>\left(\mathbf{r},t\right)</math> due to a point charge <math>q'</math> which had a velocity <math>\frac{\mathbf{r'}}{∂t}</math> at <math>\left(\mathbf{r'},t'\right)</math> is:
  
<math>\mathbf{A}\left(\mathbf{r},\mathbf{r'}\right) = \mathbf{\varphi}\left(\mathbf{r},\mathbf{r'}\right) \times \underset{constant}{\frac{1}{c^2}} \times \underset{dislocation}{\frac{d\mathbf{r'}}{dt}}</math>
+
<math>\mathbf{A}\left(\mathbf{r},\mathbf{r'}\right) = \mathbf{\varphi}\left(\mathbf{r},\mathbf{r'}\right) \times \underset{constant}{\frac{1}{c^2}} \times \underset{dislocation}{\frac{\mathbf{r'}}{∂t}}</math>
  
<math>\mathbf{A}\left(\mathbf{r},\mathbf{r'}\right) =  \underset{constant}{\frac{\mu_0\ q'}{4\pi}} \times \underset{proximity}{\frac{1}{|\mathbf{r}-\mathbf{r'}|}} \times \underset{dislocation}{\frac{d\mathbf{r'}}{dt}}</math>
+
<math>\mathbf{A}\left(\mathbf{r},\mathbf{r'}\right) =  \underset{constant}{\frac{\mu_0\ q'}{4\pi}} \times \underset{proximity}{\frac{1}{|\mathbf{r}-\mathbf{r'}|}} \times \underset{dislocation}{\frac{\mathbf{r'}}{∂t}}</math>
  
 
==Functions for an ordered pair of point charges <math>(q,q')</math>==
 
==Functions for an ordered pair of point charges <math>(q,q')</math>==
Line 18: Line 18:
 
:<math>q\varphi\left(\mathbf{r},\mathbf{r'}\right) = \underset{constant}{\frac{qq'}{4\pi\ \epsilon_0}} \times \underset{proximity}{\frac{1}{|\mathbf{r}-\mathbf{r'}|}}</math>
 
:<math>q\varphi\left(\mathbf{r},\mathbf{r'}\right) = \underset{constant}{\frac{qq'}{4\pi\ \epsilon_0}} \times \underset{proximity}{\frac{1}{|\mathbf{r}-\mathbf{r'}|}}</math>
  
A charge <math>q</math> subject to a magnetic vector potential <math>A</math> at <math>\left(\mathbf{r},t\right)</math> due to a point charge <math>q'</math> which had a velocity <math>\frac{d\mathbf{r'}}{dt}</math> at <math>\left(\mathbf{r'},t'\right)</math> has a potential momentum of:
+
A charge <math>q</math> subject to a magnetic vector potential <math>A</math> at <math>\left(\mathbf{r},t\right)</math> due to a point charge <math>q'</math> which had a velocity <math>\frac{\mathbf{r'}}{∂t}</math> at <math>\left(\mathbf{r'},t'\right)</math> has a potential momentum of:
  
:<math>q\mathbf{A}\left(\mathbf{r},\mathbf{r'}\right) = \varphi\left(\mathbf{r},\mathbf{r'}\right) \times \underset{constant}{\frac{q}{c^2}} \times \underset{dislocation}{\frac{d\mathbf{r'}}{dt}}</math>
+
:<math>q\mathbf{A}\left(\mathbf{r},\mathbf{r'}\right) = \varphi\left(\mathbf{r},\mathbf{r'}\right) \times \underset{constant}{\frac{q}{c^2}} \times \underset{dislocation}{\frac{\mathbf{r'}}{∂t}}</math>
  
:<math>q\mathbf{A}\left(\mathbf{r},\mathbf{r'}\right) =  \underset{constant}{\frac{\mu_0\ qq'}{4\pi}} \times \underset{proximity}{\frac{1}{|\mathbf{r}-\mathbf{r'}|}} \times \underset{dislocation}{\frac{d\mathbf{r'}}{dt}}</math>
+
:<math>q\mathbf{A}\left(\mathbf{r},\mathbf{r'}\right) =  \underset{constant}{\frac{\mu_0\ qq'}{4\pi}} \times \underset{proximity}{\frac{1}{|\mathbf{r}-\mathbf{r'}|}} \times \underset{dislocation}{\frac{\mathbf{r'}}{∂t}}</math>
  
 
=== Lorentz Force for <math>(q,q')</math> ===
 
=== Lorentz Force for <math>(q,q')</math> ===
Line 57: Line 57:
  
 
<math>\frac{∂\mathbf{A}\left(\mathbf{r},\mathbf{r'}\right)}{∂t} = \underset{constant}{\frac{\mu_0\ q'}{4\pi}} \left[ \underset{proximity}{ \frac{ ∂\left[ \frac{1}{|\mathbf{r}-\mathbf{r'}|} \right] }{∂t}} \underset{dislocation}{\frac{∂\mathbf{r'}}{∂t}} + \underset{proximity}{\frac{1}{|\mathbf{r}-\mathbf{r'}|}} \underset{dislocation}{ \frac{ ∂\left[ \frac{∂\mathbf{r'}}{∂t} \right] }{∂t}} \right]</math>
 
<math>\frac{∂\mathbf{A}\left(\mathbf{r},\mathbf{r'}\right)}{∂t} = \underset{constant}{\frac{\mu_0\ q'}{4\pi}} \left[ \underset{proximity}{ \frac{ ∂\left[ \frac{1}{|\mathbf{r}-\mathbf{r'}|} \right] }{∂t}} \underset{dislocation}{\frac{∂\mathbf{r'}}{∂t}} + \underset{proximity}{\frac{1}{|\mathbf{r}-\mathbf{r'}|}} \underset{dislocation}{ \frac{ ∂\left[ \frac{∂\mathbf{r'}}{∂t} \right] }{∂t}} \right]</math>
 +
 +
<math>\frac{∂\mathbf{A}\left(\mathbf{r},\mathbf{r'}\right)}{∂t} = \underset{constant}{\frac{\mu_0\ q'}{4\pi}} \left[ \underset{proximity}{ \frac{ ∂\left[ \frac{1}{|\mathbf{r}-\mathbf{r'}|} \right] }{∂t}} \underset{dislocation}{\frac{∂\mathbf{r'}}{∂t}} + \underset{proximity}{\frac{1}{|\mathbf{r}-\mathbf{r'}|}} \underset{dislocation}{ \frac{∂^2r'}{∂t^2} } \right]</math>
  
 
==See also==
 
==See also==

Revision as of 00:46, 15 May 2016

Functions for a point charge q

The electric scalar potential φ at (r,t) due to a point charge q at (r,t) is:

φ(r,r)=q4π ϵ0constant×1|rr|proximity

The magnetic vector potential A at (r,t) due to a point charge q which had a velocity rt at (r,t) is:

A(r,r)=φ(r,r)×1c2constant×rtdislocation

A(r,r)=μ0 q4πconstant×1|rr|proximity×rtdislocation

Functions for an ordered pair of point charges (q,q)

A charge q subject to an electric scalar potential φ at (r,t) due to a point charge q at (r,t) has an electric potential energy of:

qφ(r,r)=qq4π ϵ0constant×1|rr|proximity

A charge q subject to a magnetic vector potential A at (r,t) due to a point charge q which had a velocity rt at (r,t) has a potential momentum of:

qA(r,r)=φ(r,r)×qc2constant×rtdislocation
qA(r,r)=μ0 qq4πconstant×1|rr|proximity×rtdislocation

Lorentz Force for (q,q)

The Lorentz Force between charges (q,q) can be derived from the scalar potential φ and the vector potential A.

A charge q which has a velocity of v at (r,t) will experience a Lorentz force due to a point charge q at (r,t) of:

F=q[E+v×B]

The electric field E is:

E=φAt

The magnetic field B is:

B=×A

The Lorentz Force can be expressed directly in terms of the potentials:

F=q[φAt+v×(×A)]

Where:

  • φ = negative the gradient of the scalar potential φ.
  • At = negative the partial derivative of the magnetic vector potential A with respect to time t.
  • v×(×A) = the cross product of the velocity v of the charge q and the curl of the magnetic vector potential ×A=B due to charge q.

To restate from a previous section, the magnetic vector potential of a charge q experienced by a charge q is:

A(r,r)=μ0 q4πconstant1|rr|proximityrtdislocation

The partial derivative of this with respect to time t is:

A(r,r)t=μ0 q4πconstant[[1|rr|]tproximityrtdislocation+1|rr|proximity[rt]tdislocation]

A(r,r)t=μ0 q4πconstant[[1|rr|]tproximityrtdislocation+1|rr|proximity2rt2dislocation]

See also

Site map

HQGlossaryApril 2016 Presentation