Difference between revisions of "Functions composed of Physical Expressions"

From S.H.O.
Jump to: navigation, search
Line 4: Line 4:
 
The electric scalar potential <math>\mathbf{\varphi}</math> at <math>\left(\mathbf{r},t\right)</math> due to a point charge <math>q'</math> at <math>\left(\mathbf{r'},t'\right)</math> is:
 
The electric scalar potential <math>\mathbf{\varphi}</math> at <math>\left(\mathbf{r},t\right)</math> due to a point charge <math>q'</math> at <math>\left(\mathbf{r'},t'\right)</math> is:
  
<math>\mathbf{\varphi}\left(\mathbf{r},\mathbf{r'}\right) = \underset{constant}{\frac{q'}{4\pi\ \epsilon_0}} \times \underset{proximity}{\frac{1}{|\mathbf{r}-\mathbf{r'}|}}</math>
+
<math>\mathbf{\varphi}\left(\mathbf{r},\mathbf{r'}\right) \quad = \quad \underset{constant}{\frac{q'}{4\pi\ \epsilon_0}} \quad \underset{proximity}{\frac{1}{|\mathbf{r}-\mathbf{r'}|}}</math>
  
 
The magnetic vector potential <math>A</math> at <math>\left(\mathbf{r},t\right)</math> due to a point charge <math>q'</math> which had a velocity <math>\frac{∂\mathbf{r'}}{∂t}</math> at <math>\left(\mathbf{r'},t'\right)</math> is:
 
The magnetic vector potential <math>A</math> at <math>\left(\mathbf{r},t\right)</math> due to a point charge <math>q'</math> which had a velocity <math>\frac{∂\mathbf{r'}}{∂t}</math> at <math>\left(\mathbf{r'},t'\right)</math> is:
  
<math>\mathbf{A}\left(\mathbf{r},\mathbf{r'}\right) = \mathbf{\varphi}\left(\mathbf{r},\mathbf{r'}\right) \times \underset{constant}{\frac{1}{c^2}} \times \underset{dislocation}{\frac{∂\mathbf{r'}}{∂t}}</math>
+
<math>\mathbf{A}\left(\mathbf{r},\mathbf{r'}\right) \quad = \quad \mathbf{\varphi}\left(\mathbf{r},\mathbf{r'}\right) \quad \underset{constant}{\frac{1}{c^2}} \quad \underset{dislocation}{\frac{∂\mathbf{r'}}{∂t}}</math>
  
<math>\mathbf{A}\left(\mathbf{r},\mathbf{r'}\right) = \underset{constant}{\frac{\mu_0\ q'}{4\pi}} \times \underset{proximity}{\frac{1}{|\mathbf{r}-\mathbf{r'}|}} \times \underset{dislocation}{\frac{∂\mathbf{r'}}{∂t}}</math>
+
<math>\mathbf{A}\left(\mathbf{r},\mathbf{r'}\right) \quad = \quad \underset{constant}{\frac{\mu_0\ q'}{4\pi}} \quad \underset{proximity}{\frac{1}{|\mathbf{r}-\mathbf{r'}|}} \quad \underset{dislocation}{\frac{∂\mathbf{r'}}{∂t}}</math>
  
 
==Functions for an ordered pair of point charges <math>(q,q')</math>==
 
==Functions for an ordered pair of point charges <math>(q,q')</math>==
Line 16: Line 16:
 
A charge <math>q</math> subject to an electric scalar potential <math>\varphi</math> at <math>\left(\mathbf{r},t\right)</math> due to a point charge <math>q'</math> at <math>\left(\mathbf{r'},t'\right)</math> has an electric potential energy of:
 
A charge <math>q</math> subject to an electric scalar potential <math>\varphi</math> at <math>\left(\mathbf{r},t\right)</math> due to a point charge <math>q'</math> at <math>\left(\mathbf{r'},t'\right)</math> has an electric potential energy of:
  
:<math>q\varphi\left(\mathbf{r},\mathbf{r'}\right) = \underset{constant}{\frac{qq'}{4\pi\ \epsilon_0}} \times \underset{proximity}{\frac{1}{|\mathbf{r}-\mathbf{r'}|}}</math>
+
:<math>q\varphi\left(\mathbf{r},\mathbf{r'}\right) \quad = \quad \underset{constant}{\frac{qq'}{4\pi\ \epsilon_0}} \quad \underset{proximity}{\frac{1}{|\mathbf{r}-\mathbf{r'}|}}</math>
  
 
A charge <math>q</math> subject to a magnetic vector potential <math>A</math> at <math>\left(\mathbf{r},t\right)</math> due to a point charge <math>q'</math> which had a velocity <math>\frac{∂\mathbf{r'}}{∂t}</math> at <math>\left(\mathbf{r'},t'\right)</math> has a potential momentum of:
 
A charge <math>q</math> subject to a magnetic vector potential <math>A</math> at <math>\left(\mathbf{r},t\right)</math> due to a point charge <math>q'</math> which had a velocity <math>\frac{∂\mathbf{r'}}{∂t}</math> at <math>\left(\mathbf{r'},t'\right)</math> has a potential momentum of:
  
:<math>q\mathbf{A}\left(\mathbf{r},\mathbf{r'}\right) = \varphi\left(\mathbf{r},\mathbf{r'}\right) \times \underset{constant}{\frac{q}{c^2}} \times \underset{dislocation}{\frac{∂\mathbf{r'}}{∂t}}</math>
+
:<math>q\mathbf{A}\left(\mathbf{r},\mathbf{r'}\right) \quad = \quad \varphi\left(\mathbf{r},\mathbf{r'}\right) \quad \underset{constant}{\frac{q}{c^2}} \quad \underset{dislocation}{\frac{∂\mathbf{r'}}{∂t}}</math>
  
:<math>q\mathbf{A}\left(\mathbf{r},\mathbf{r'}\right) = \underset{constant}{\frac{\mu_0\ qq'}{4\pi}} \times \underset{proximity}{\frac{1}{|\mathbf{r}-\mathbf{r'}|}} \times \underset{dislocation}{\frac{∂\mathbf{r'}}{∂t}}</math>
+
:<math>q\mathbf{A}\left(\mathbf{r},\mathbf{r'}\right) \quad = \quad \underset{constant}{\frac{\mu_0\ qq'}{4\pi}} \quad \underset{proximity}{\frac{1}{|\mathbf{r}-\mathbf{r'}|}} \quad \underset{dislocation}{\frac{∂\mathbf{r'}}{∂t}}</math>
  
 
=== Lorentz Force for <math>(q,q')</math> ===
 
=== Lorentz Force for <math>(q,q')</math> ===
Line 30: Line 30:
 
A charge <math>q</math> which has a velocity of <math>\mathbf{v}</math> at <math>\left(\mathbf{r},t\right)</math> will experience a Lorentz force due to a point charge <math>q'</math> at <math>\left(\mathbf{r'},t'\right)</math> of:
 
A charge <math>q</math> which has a velocity of <math>\mathbf{v}</math> at <math>\left(\mathbf{r},t\right)</math> will experience a Lorentz force due to a point charge <math>q'</math> at <math>\left(\mathbf{r'},t'\right)</math> of:
  
:<math>\mathbf{F} = q\left[\mathbf{E} + \mathbf{v} \times \mathbf{B}\right]</math>
+
:<math>\mathbf{F} \quad = \quad q\left[\mathbf{E} + \mathbf{v} \times \mathbf{B}\right]</math>
  
 
The electric field <math>\mathbf{E}</math> is:
 
The electric field <math>\mathbf{E}</math> is:
  
:<math>\mathbf{E} = - \nabla \varphi - \frac{∂\mathbf{A}}{∂t}</math>
+
:<math>\mathbf{E} \quad = \quad - \nabla \varphi - \frac{∂\mathbf{A}}{∂t}</math>
  
 
The magnetic field <math>\mathbf{B}</math> is:
 
The magnetic field <math>\mathbf{B}</math> is:
  
:<math>\mathbf{B} = \nabla \times \mathbf{A}</math>
+
:<math>\mathbf{B} \quad = \quad \nabla \times \mathbf{A}</math>
  
 
The Lorentz Force can be expressed directly in terms of the potentials:
 
The Lorentz Force can be expressed directly in terms of the potentials:
  
:<math>\mathbf{F} = q\left[- \nabla \varphi - \frac{∂\mathbf{A}}{∂t} + \mathbf{v} \times \left( \nabla \times \mathbf{A} \right)\right]</math>
+
:<math>\mathbf{F} \quad = \quad q\left[- \nabla \varphi - \frac{∂\mathbf{A}}{∂t} + \mathbf{v} \times \left( \nabla \times \mathbf{A} \right)\right]</math>
  
 
Where:
 
Where:
Line 52: Line 52:
 
To restate from a previous section, the magnetic vector potential of a charge <math>q</math> experienced by a charge <math>q</math> is:
 
To restate from a previous section, the magnetic vector potential of a charge <math>q</math> experienced by a charge <math>q</math> is:
  
<math>\mathbf{A}\left(\mathbf{r},\mathbf{r'}\right) = \underset{constant}{\frac{\mu_0\ q'}{4\pi}} \underset{proximity}{\frac{1}{|\mathbf{r}-\mathbf{r'}|}} \underset{dislocation}{\frac{∂\mathbf{r'}}{∂t}}</math>
+
<math>\mathbf{A}\left(\mathbf{r},\mathbf{r'}\right) \quad = \quad \underset{constant}{\frac{\mu_0\ q'}{4\pi}} \quad \underset{proximity}{\frac{1}{|\mathbf{r}-\mathbf{r'}|}} \quad \underset{dislocation}{\frac{∂\mathbf{r'}}{∂t}}</math>
  
 
The partial derivative of this with respect to time <math>t</math> is:
 
The partial derivative of this with respect to time <math>t</math> is:
  
<math>\frac{∂\mathbf{A}\left(\mathbf{r},\mathbf{r'}\right)}{∂t} = \underset{constant}{\frac{\mu_0\ q'}{4\pi}} \left[ \underset{proximity}{ \frac{ ∂\left[ \frac{1}{|\mathbf{r}-\mathbf{r'}|} \right] }{∂t}} \underset{dislocation}{\frac{∂\mathbf{r'}}{∂t}} + \underset{proximity}{\frac{1}{|\mathbf{r}-\mathbf{r'}|}} \underset{dislocation}{ \frac{ ∂\left[ \frac{∂\mathbf{r'}}{∂t} \right] }{∂t}} \right]</math>
+
<math>\frac{∂\mathbf{A}\left(\mathbf{r},\mathbf{r'}\right)}{∂t} \quad = \quad \underset{constant}{\frac{\mu_0\ q'}{4\pi}} \left[ \underset{proximity}{ \frac{ ∂\left[ \frac{1}{|\mathbf{r}-\mathbf{r'}|} \right] }{∂t}} \quad \underset{dislocation}{\frac{∂\mathbf{r'}}{∂t}} + \underset{proximity}{\frac{1}{|\mathbf{r}-\mathbf{r'}|}} \quad \underset{dislocation}{ \frac{ ∂\left[ \frac{∂\mathbf{r'}}{∂t} \right] }{∂t}} \right]</math>
  
<math>\frac{∂\mathbf{A}\left(\mathbf{r},\mathbf{r'}\right)}{∂t} = \underset{constant}{\frac{\mu_0\ q'}{4\pi}} \left[ \underset{proximity}{ \frac{ ∂\left[ \frac{1}{|\mathbf{r}-\mathbf{r'}|} \right] }{∂t}} \underset{dislocation}{\frac{∂\mathbf{r'}}{∂t}} + \underset{proximity}{\frac{1}{|\mathbf{r}-\mathbf{r'}|}} \underset{dislocation}{ \frac{∂^2r'}{∂t^2} } \right]</math>
+
<math>\frac{∂\mathbf{A}\left(\mathbf{r},\mathbf{r'}\right)}{∂t} \quad = \quad \underset{constant}{\frac{\mu_0\ q'}{4\pi}} \left[ \underset{proximity}{ \frac{ ∂\left[ \frac{1}{|\mathbf{r}-\mathbf{r'}|} \right] }{∂t}} \quad \underset{dislocation}{\frac{∂\mathbf{r'}}{∂t}} + \underset{proximity}{\frac{1}{|\mathbf{r}-\mathbf{r'}|}} \quad \underset{dislocation}{ \frac{∂^2r'}{∂t^2} } \right]</math>
 +
 
 +
Where:
 +
* <math>\frac{∂^2r'}{∂t^2}</math> = the acceleration of <math>q'</math> at the retarded time <math>t'</math> according to an observer at time <math>t</math> sharing the same inertial frame as <math>q</math>.
  
 
==See also==
 
==See also==

Revision as of 01:04, 15 May 2016

Functions for a point charge q

The electric scalar potential φ at (r,t) due to a point charge q at (r,t) is:

φ(r,r)=q4π ϵ0constant1|rr|proximity

The magnetic vector potential A at (r,t) due to a point charge q which had a velocity rt at (r,t) is:

A(r,r)=φ(r,r)1c2constantrtdislocation

A(r,r)=μ0 q4πconstant1|rr|proximityrtdislocation

Functions for an ordered pair of point charges (q,q)

A charge q subject to an electric scalar potential φ at (r,t) due to a point charge q at (r,t) has an electric potential energy of:

qφ(r,r)=qq4π ϵ0constant1|rr|proximity

A charge q subject to a magnetic vector potential A at (r,t) due to a point charge q which had a velocity rt at (r,t) has a potential momentum of:

qA(r,r)=φ(r,r)qc2constantrtdislocation
qA(r,r)=μ0 qq4πconstant1|rr|proximityrtdislocation

Lorentz Force for (q,q)

The Lorentz Force between charges (q,q) can be derived from the scalar potential φ and the vector potential A.

A charge q which has a velocity of v at (r,t) will experience a Lorentz force due to a point charge q at (r,t) of:

F=q[E+v×B]

The electric field E is:

E=φAt

The magnetic field B is:

B=×A

The Lorentz Force can be expressed directly in terms of the potentials:

F=q[φAt+v×(×A)]

Where:

  • φ = negative the gradient of the scalar potential φ.
  • At = negative the partial derivative of the magnetic vector potential A with respect to time t.
  • v×(×A) = the cross product of the velocity v of the charge q and the curl of the magnetic vector potential ×A=B due to charge q.

To restate from a previous section, the magnetic vector potential of a charge q experienced by a charge q is:

A(r,r)=μ0 q4πconstant1|rr|proximityrtdislocation

The partial derivative of this with respect to time t is:

A(r,r)t=μ0 q4πconstant[[1|rr|]tproximityrtdislocation+1|rr|proximity[rt]tdislocation]

A(r,r)t=μ0 q4πconstant[[1|rr|]tproximityrtdislocation+1|rr|proximity2rt2dislocation]

Where:

  • 2rt2 = the acceleration of q at the retarded time t according to an observer at time t sharing the same inertial frame as q.

See also

Site map

HQGlossaryApril 2016 Presentation