Difference between revisions of "Functions composed of Physical Expressions"
From S.H.O.
Line 4: | Line 4: | ||
The electric scalar potential <math>\mathbf{\varphi}</math> at <math>\left(\mathbf{r},t\right)</math> due to a point charge <math>q'</math> at <math>\left(\mathbf{r'},t'\right)</math> is: | The electric scalar potential <math>\mathbf{\varphi}</math> at <math>\left(\mathbf{r},t\right)</math> due to a point charge <math>q'</math> at <math>\left(\mathbf{r'},t'\right)</math> is: | ||
− | <math>\mathbf{\varphi}\left(\mathbf{r},\mathbf{r'}\right) = \underset{constant}{\frac{q'}{4\pi\ \epsilon_0}} \ | + | <math>\mathbf{\varphi}\left(\mathbf{r},\mathbf{r'}\right) \quad = \quad \underset{constant}{\frac{q'}{4\pi\ \epsilon_0}} \quad \underset{proximity}{\frac{1}{|\mathbf{r}-\mathbf{r'}|}}</math> |
The magnetic vector potential <math>A</math> at <math>\left(\mathbf{r},t\right)</math> due to a point charge <math>q'</math> which had a velocity <math>\frac{∂\mathbf{r'}}{∂t}</math> at <math>\left(\mathbf{r'},t'\right)</math> is: | The magnetic vector potential <math>A</math> at <math>\left(\mathbf{r},t\right)</math> due to a point charge <math>q'</math> which had a velocity <math>\frac{∂\mathbf{r'}}{∂t}</math> at <math>\left(\mathbf{r'},t'\right)</math> is: | ||
− | <math>\mathbf{A}\left(\mathbf{r},\mathbf{r'}\right) = \mathbf{\varphi}\left(\mathbf{r},\mathbf{r'}\right) \ | + | <math>\mathbf{A}\left(\mathbf{r},\mathbf{r'}\right) \quad = \quad \mathbf{\varphi}\left(\mathbf{r},\mathbf{r'}\right) \quad \underset{constant}{\frac{1}{c^2}} \quad \underset{dislocation}{\frac{∂\mathbf{r'}}{∂t}}</math> |
− | <math>\mathbf{A}\left(\mathbf{r},\mathbf{r'}\right) = | + | <math>\mathbf{A}\left(\mathbf{r},\mathbf{r'}\right) \quad = \quad \underset{constant}{\frac{\mu_0\ q'}{4\pi}} \quad \underset{proximity}{\frac{1}{|\mathbf{r}-\mathbf{r'}|}} \quad \underset{dislocation}{\frac{∂\mathbf{r'}}{∂t}}</math> |
==Functions for an ordered pair of point charges <math>(q,q')</math>== | ==Functions for an ordered pair of point charges <math>(q,q')</math>== | ||
Line 16: | Line 16: | ||
A charge <math>q</math> subject to an electric scalar potential <math>\varphi</math> at <math>\left(\mathbf{r},t\right)</math> due to a point charge <math>q'</math> at <math>\left(\mathbf{r'},t'\right)</math> has an electric potential energy of: | A charge <math>q</math> subject to an electric scalar potential <math>\varphi</math> at <math>\left(\mathbf{r},t\right)</math> due to a point charge <math>q'</math> at <math>\left(\mathbf{r'},t'\right)</math> has an electric potential energy of: | ||
− | :<math>q\varphi\left(\mathbf{r},\mathbf{r'}\right) = \underset{constant}{\frac{qq'}{4\pi\ \epsilon_0}} \ | + | :<math>q\varphi\left(\mathbf{r},\mathbf{r'}\right) \quad = \quad \underset{constant}{\frac{qq'}{4\pi\ \epsilon_0}} \quad \underset{proximity}{\frac{1}{|\mathbf{r}-\mathbf{r'}|}}</math> |
A charge <math>q</math> subject to a magnetic vector potential <math>A</math> at <math>\left(\mathbf{r},t\right)</math> due to a point charge <math>q'</math> which had a velocity <math>\frac{∂\mathbf{r'}}{∂t}</math> at <math>\left(\mathbf{r'},t'\right)</math> has a potential momentum of: | A charge <math>q</math> subject to a magnetic vector potential <math>A</math> at <math>\left(\mathbf{r},t\right)</math> due to a point charge <math>q'</math> which had a velocity <math>\frac{∂\mathbf{r'}}{∂t}</math> at <math>\left(\mathbf{r'},t'\right)</math> has a potential momentum of: | ||
− | :<math>q\mathbf{A}\left(\mathbf{r},\mathbf{r'}\right) = \varphi\left(\mathbf{r},\mathbf{r'}\right) \ | + | :<math>q\mathbf{A}\left(\mathbf{r},\mathbf{r'}\right) \quad = \quad \varphi\left(\mathbf{r},\mathbf{r'}\right) \quad \underset{constant}{\frac{q}{c^2}} \quad \underset{dislocation}{\frac{∂\mathbf{r'}}{∂t}}</math> |
− | :<math>q\mathbf{A}\left(\mathbf{r},\mathbf{r'}\right) = | + | :<math>q\mathbf{A}\left(\mathbf{r},\mathbf{r'}\right) \quad = \quad \underset{constant}{\frac{\mu_0\ qq'}{4\pi}} \quad \underset{proximity}{\frac{1}{|\mathbf{r}-\mathbf{r'}|}} \quad \underset{dislocation}{\frac{∂\mathbf{r'}}{∂t}}</math> |
=== Lorentz Force for <math>(q,q')</math> === | === Lorentz Force for <math>(q,q')</math> === | ||
Line 30: | Line 30: | ||
A charge <math>q</math> which has a velocity of <math>\mathbf{v}</math> at <math>\left(\mathbf{r},t\right)</math> will experience a Lorentz force due to a point charge <math>q'</math> at <math>\left(\mathbf{r'},t'\right)</math> of: | A charge <math>q</math> which has a velocity of <math>\mathbf{v}</math> at <math>\left(\mathbf{r},t\right)</math> will experience a Lorentz force due to a point charge <math>q'</math> at <math>\left(\mathbf{r'},t'\right)</math> of: | ||
− | :<math>\mathbf{F} = q\left[\mathbf{E} + \mathbf{v} \times \mathbf{B}\right]</math> | + | :<math>\mathbf{F} \quad = \quad q\left[\mathbf{E} + \mathbf{v} \times \mathbf{B}\right]</math> |
The electric field <math>\mathbf{E}</math> is: | The electric field <math>\mathbf{E}</math> is: | ||
− | :<math>\mathbf{E} = - \nabla \varphi - \frac{∂\mathbf{A}}{∂t}</math> | + | :<math>\mathbf{E} \quad = \quad - \nabla \varphi - \frac{∂\mathbf{A}}{∂t}</math> |
The magnetic field <math>\mathbf{B}</math> is: | The magnetic field <math>\mathbf{B}</math> is: | ||
− | :<math>\mathbf{B} = \nabla \times \mathbf{A}</math> | + | :<math>\mathbf{B} \quad = \quad \nabla \times \mathbf{A}</math> |
The Lorentz Force can be expressed directly in terms of the potentials: | The Lorentz Force can be expressed directly in terms of the potentials: | ||
− | :<math>\mathbf{F} = q\left[- \nabla \varphi - \frac{∂\mathbf{A}}{∂t} + \mathbf{v} \times \left( \nabla \times \mathbf{A} \right)\right]</math> | + | :<math>\mathbf{F} \quad = \quad q\left[- \nabla \varphi - \frac{∂\mathbf{A}}{∂t} + \mathbf{v} \times \left( \nabla \times \mathbf{A} \right)\right]</math> |
Where: | Where: | ||
Line 52: | Line 52: | ||
To restate from a previous section, the magnetic vector potential of a charge <math>q</math> experienced by a charge <math>q</math> is: | To restate from a previous section, the magnetic vector potential of a charge <math>q</math> experienced by a charge <math>q</math> is: | ||
− | <math>\mathbf{A}\left(\mathbf{r},\mathbf{r'}\right) = | + | <math>\mathbf{A}\left(\mathbf{r},\mathbf{r'}\right) \quad = \quad \underset{constant}{\frac{\mu_0\ q'}{4\pi}} \quad \underset{proximity}{\frac{1}{|\mathbf{r}-\mathbf{r'}|}} \quad \underset{dislocation}{\frac{∂\mathbf{r'}}{∂t}}</math> |
The partial derivative of this with respect to time <math>t</math> is: | The partial derivative of this with respect to time <math>t</math> is: | ||
− | <math>\frac{∂\mathbf{A}\left(\mathbf{r},\mathbf{r'}\right)}{∂t} = \underset{constant}{\frac{\mu_0\ q'}{4\pi}} \left[ \underset{proximity}{ \frac{ ∂\left[ \frac{1}{|\mathbf{r}-\mathbf{r'}|} \right] }{∂t}} \underset{dislocation}{\frac{∂\mathbf{r'}}{∂t}} + \underset{proximity}{\frac{1}{|\mathbf{r}-\mathbf{r'}|}} \underset{dislocation}{ \frac{ ∂\left[ \frac{∂\mathbf{r'}}{∂t} \right] }{∂t}} \right]</math> | + | <math>\frac{∂\mathbf{A}\left(\mathbf{r},\mathbf{r'}\right)}{∂t} \quad = \quad \underset{constant}{\frac{\mu_0\ q'}{4\pi}} \left[ \underset{proximity}{ \frac{ ∂\left[ \frac{1}{|\mathbf{r}-\mathbf{r'}|} \right] }{∂t}} \quad \underset{dislocation}{\frac{∂\mathbf{r'}}{∂t}} + \underset{proximity}{\frac{1}{|\mathbf{r}-\mathbf{r'}|}} \quad \underset{dislocation}{ \frac{ ∂\left[ \frac{∂\mathbf{r'}}{∂t} \right] }{∂t}} \right]</math> |
− | <math>\frac{∂\mathbf{A}\left(\mathbf{r},\mathbf{r'}\right)}{∂t} = \underset{constant}{\frac{\mu_0\ q'}{4\pi}} \left[ \underset{proximity}{ \frac{ ∂\left[ \frac{1}{|\mathbf{r}-\mathbf{r'}|} \right] }{∂t}} \underset{dislocation}{\frac{∂\mathbf{r'}}{∂t}} + \underset{proximity}{\frac{1}{|\mathbf{r}-\mathbf{r'}|}} \underset{dislocation}{ \frac{∂^2r'}{∂t^2} } \right]</math> | + | <math>\frac{∂\mathbf{A}\left(\mathbf{r},\mathbf{r'}\right)}{∂t} \quad = \quad \underset{constant}{\frac{\mu_0\ q'}{4\pi}} \left[ \underset{proximity}{ \frac{ ∂\left[ \frac{1}{|\mathbf{r}-\mathbf{r'}|} \right] }{∂t}} \quad \underset{dislocation}{\frac{∂\mathbf{r'}}{∂t}} + \underset{proximity}{\frac{1}{|\mathbf{r}-\mathbf{r'}|}} \quad \underset{dislocation}{ \frac{∂^2r'}{∂t^2} } \right]</math> |
+ | |||
+ | Where: | ||
+ | * <math>\frac{∂^2r'}{∂t^2}</math> = the acceleration of <math>q'</math> at the retarded time <math>t'</math> according to an observer at time <math>t</math> sharing the same inertial frame as <math>q</math>. | ||
==See also== | ==See also== |
Revision as of 01:04, 15 May 2016
Contents
[hide]Functions for a point charge
The electric scalar potential
at due to a point charge at is:
The magnetic vector potential
at due to a point charge which had a velocity at is:
Functions for an ordered pair of point charges
A charge
subject to an electric scalar potential at due to a point charge at has an electric potential energy of:A charge
subject to a magnetic vector potential at due to a point charge which had a velocity at has a potential momentum of:Lorentz Force for
The Lorentz Force between charges
can be derived from the scalar potential and the vector potential .A charge
which has a velocity of at will experience a Lorentz force due to a point charge at of:The electric field
is:The magnetic field
is:The Lorentz Force can be expressed directly in terms of the potentials:
Where:
- = negative the gradient of the scalar potential .
- = negative the partial derivative of the magnetic vector potential with respect to time .
- = the cross product of the velocity of the charge and the curl of the magnetic vector potential due to charge .
To restate from a previous section, the magnetic vector potential of a charge
experienced by a charge is:
The partial derivative of this with respect to time
is:
Where:
- = the acceleration of at the retarded time according to an observer at time sharing the same inertial frame as .
See also
Site map
HQ ● Glossary ● April 2016 Presentation
|