From S.H.O.
|
|
Line 50: |
Line 50: |
| * <math>\mathbf{v} \times \left( \nabla \times \mathbf{A} \right)</math> = the cross product of the velocity <math>\mathbf{v}</math> of the charge <math>q</math> and the curl of the magnetic vector potential <math>\nabla \times \mathbf{A} = \mathbf{B}</math> due to charge <math>q'</math>. | | * <math>\mathbf{v} \times \left( \nabla \times \mathbf{A} \right)</math> = the cross product of the velocity <math>\mathbf{v}</math> of the charge <math>q</math> and the curl of the magnetic vector potential <math>\nabla \times \mathbf{A} = \mathbf{B}</math> due to charge <math>q'</math>. |
| | | |
− | To restate from a previous section, the magnetic vector potential of a charge <math>q</math> experienced by a charge <math>q</math> is: | + | To restate from a previous section, the magnetic vector potential from a charge <math>q'</math> at the position <math>r</math> at <math>q</math> is: |
| | | |
| : <math>\mathbf{A}\left(\mathbf{r},\mathbf{r'}\right) \quad = \quad \underset{constant}{\frac{\mu_0\ q'}{4\pi}} \quad \underset{proximity}{\frac{1}{|\mathbf{r}-\mathbf{r'}|}} \quad \underset{dislocation}{\frac{∂\mathbf{r'}}{∂t}}</math> | | : <math>\mathbf{A}\left(\mathbf{r},\mathbf{r'}\right) \quad = \quad \underset{constant}{\frac{\mu_0\ q'}{4\pi}} \quad \underset{proximity}{\frac{1}{|\mathbf{r}-\mathbf{r'}|}} \quad \underset{dislocation}{\frac{∂\mathbf{r'}}{∂t}}</math> |
Revision as of 01:59, 15 May 2016
Functions for a point charge [math]q'[/math]
The electric scalar potential [math]\mathbf{\varphi}[/math] at [math]\left(\mathbf{r},t\right)[/math] due to a point charge [math]q'[/math] at [math]\left(\mathbf{r'},t'\right)[/math] is:
[math]\mathbf{\varphi}\left(\mathbf{r},\mathbf{r'}\right) \quad = \quad \underset{constant}{\frac{q'}{4\pi\ \epsilon_0}} \quad \underset{proximity}{\frac{1}{|\mathbf{r}-\mathbf{r'}|}}[/math]
The magnetic vector potential [math]A[/math] at [math]\left(\mathbf{r},t\right)[/math] due to a point charge [math]q'[/math] which had a velocity [math]\frac{∂\mathbf{r'}}{∂t}[/math] at [math]\left(\mathbf{r'},t'\right)[/math] is:
[math]\mathbf{A}\left(\mathbf{r},\mathbf{r'}\right) \quad = \quad \mathbf{\varphi}\left(\mathbf{r},\mathbf{r'}\right) \quad \underset{constant}{\frac{1}{c^2}} \quad \underset{dislocation}{\frac{∂\mathbf{r'}}{∂t}}[/math]
[math]\mathbf{A}\left(\mathbf{r},\mathbf{r'}\right) \quad = \quad \underset{constant}{\frac{\mu_0\ q'}{4\pi}} \quad \underset{proximity}{\frac{1}{|\mathbf{r}-\mathbf{r'}|}} \quad \underset{dislocation}{\frac{∂\mathbf{r'}}{∂t}}[/math]
Functions for an ordered pair of point charges [math](q,q')[/math]
A charge [math]q[/math] subject to an electric scalar potential [math]\varphi[/math] at [math]\left(\mathbf{r},t\right)[/math] due to a point charge [math]q'[/math] at [math]\left(\mathbf{r'},t'\right)[/math] has an electric potential energy of:
- [math]q\varphi\left(\mathbf{r},\mathbf{r'}\right) \quad = \quad \underset{constant}{\frac{qq'}{4\pi\ \epsilon_0}} \quad \underset{proximity}{\frac{1}{|\mathbf{r}-\mathbf{r'}|}}[/math]
A charge [math]q[/math] subject to a magnetic vector potential [math]A[/math] at [math]\left(\mathbf{r},t\right)[/math] due to a point charge [math]q'[/math] which had a velocity [math]\frac{∂\mathbf{r'}}{∂t}[/math] at [math]\left(\mathbf{r'},t'\right)[/math] has a potential momentum of:
- [math]q\mathbf{A}\left(\mathbf{r},\mathbf{r'}\right) \quad = \quad \varphi\left(\mathbf{r},\mathbf{r'}\right) \quad \underset{constant}{\frac{q}{c^2}} \quad \underset{dislocation}{\frac{∂\mathbf{r'}}{∂t}}[/math]
- [math]q\mathbf{A}\left(\mathbf{r},\mathbf{r'}\right) \quad = \quad \underset{constant}{\frac{\mu_0\ qq'}{4\pi}} \quad \underset{proximity}{\frac{1}{|\mathbf{r}-\mathbf{r'}|}} \quad \underset{dislocation}{\frac{∂\mathbf{r'}}{∂t}}[/math]
Lorentz Force for [math](q,q')[/math]
The Lorentz Force between charges [math](q,q')[/math] can be derived from the scalar potential [math]\varphi[/math] and the vector potential [math]\mathbf{A}[/math].
A charge [math]q[/math] which has a velocity of [math]\mathbf{v}[/math] at [math]\left(\mathbf{r},t\right)[/math] will experience a Lorentz force due to a point charge [math]q'[/math] at [math]\left(\mathbf{r'},t'\right)[/math] of:
- [math]\mathbf{F} \quad = \quad q\left[\mathbf{E} + \mathbf{v} \times \mathbf{B}\right][/math]
The electric field [math]\mathbf{E}[/math] is:
- [math]\mathbf{E} \quad = \quad - \nabla \varphi - \frac{∂\mathbf{A}}{∂t}[/math]
The magnetic field [math]\mathbf{B}[/math] is:
- [math]\mathbf{B} \quad = \quad \nabla \times \mathbf{A}[/math]
The Lorentz Force can be expressed directly in terms of the potentials:
- [math]\mathbf{F} \quad = \quad q\left[- \nabla \varphi - \frac{∂\mathbf{A}}{∂t} + \mathbf{v} \times \left( \nabla \times \mathbf{A} \right)\right][/math]
Where:
- [math]-\nabla \varphi[/math] = negative the gradient of the scalar potential [math]\varphi[/math].
- [math]-\frac{∂\mathbf{A}}{∂t}[/math] = negative the partial derivative of the magnetic vector potential [math]\mathbf{A}[/math] with respect to time [math]t[/math].
- [math]\mathbf{v} \times \left( \nabla \times \mathbf{A} \right)[/math] = the cross product of the velocity [math]\mathbf{v}[/math] of the charge [math]q[/math] and the curl of the magnetic vector potential [math]\nabla \times \mathbf{A} = \mathbf{B}[/math] due to charge [math]q'[/math].
To restate from a previous section, the magnetic vector potential from a charge [math]q'[/math] at the position [math]r[/math] at [math]q[/math] is:
- [math]\mathbf{A}\left(\mathbf{r},\mathbf{r'}\right) \quad = \quad \underset{constant}{\frac{\mu_0\ q'}{4\pi}} \quad \underset{proximity}{\frac{1}{|\mathbf{r}-\mathbf{r'}|}} \quad \underset{dislocation}{\frac{∂\mathbf{r'}}{∂t}}[/math]
Using the product rule, the partial derivative of this with respect to time [math]t[/math] can be found. For example, the derivative of a product of two variables [math]x[/math] and [math]y[/math] with respect to time [math]t[/math] is:
- [math]\frac{d}{dt}(xy) = \dfrac{dx}{dt}y + x\dfrac{dy}{dt}[/math].
Therefore, the partial derivative of the magnetic vector potential at [math]r[/math] due to [math]q'[/math] with respect to time [math]t[/math] is:
- [math]\frac{∂\mathbf{A}\left(\mathbf{r},\mathbf{r'}\right)}{∂t} \quad = \quad \underset{constant}{\frac{\mu_0\ q'}{4\pi}} \left[ \underset{proximity}{ \frac{ ∂\left[ \frac{1}{|\mathbf{r}-\mathbf{r'}|} \right] }{∂t}} \quad \underset{dislocation}{\frac{∂\mathbf{r'}}{∂t}} + \underset{proximity}{\frac{1}{|\mathbf{r}-\mathbf{r'}|}} \quad \underset{dislocation}{ \frac{ ∂\left[ \frac{∂\mathbf{r'}}{∂t} \right] }{∂t}} \right][/math]
- [math]\frac{∂\mathbf{A}\left(\mathbf{r},\mathbf{r'}\right)}{∂t} \quad = \quad \underset{constant}{\frac{\mu_0\ q'}{4\pi}} \left[ \underset{proximity}{ \frac{ ∂\left[ \frac{1}{|\mathbf{r}-\mathbf{r'}|} \right] }{∂t}} \quad \underset{dislocation}{\frac{∂\mathbf{r'}}{∂t}} + \underset{proximity}{\frac{1}{|\mathbf{r}-\mathbf{r'}|}} \quad \underset{dislocation}{ \frac{∂^2r'}{∂t^2} } \right][/math]
First term in the brackets
[math]\frac{ ∂\left[ \frac{1}{|\mathbf{r}-\mathbf{r'}|} \right] }{∂t}[/math] The partial derivative, with respect to time [math]t[/math], of the proximity of the position [math]r[/math] of [math]q[/math] at time [math]t[/math] to the position [math]r'[/math] of [math]q'[/math] at the retarded time [math]t'[/math].
|
[math]\frac{∂r'}{∂t}[/math] According to an observer at time [math]t[/math]: the velocity a charge [math]q'[/math] had at the retarded time [math]t' = t - |\mathbf{r}-\mathbf{r'}|/c[/math], when it emitted a light signal which has now reached [math]q[/math] at position [math]\mathbf{r}[/math] and time [math]t[/math]
|
Second term in the brackets
[math]\frac{1}{|\mathbf{r}-\mathbf{r'}|}[/math] The proximity of the position [math]r[/math] of [math]q[/math] at time [math]t[/math] to the position [math]r'[/math] of [math]q'[/math] at the retarded time [math]t'[/math].
|
[math]\frac{∂^2r'}{∂t^2}[/math] According to an observer at time [math]t[/math]: the acceleration a charge [math]q'[/math] had at the retarded time [math]t' = t - |\mathbf{r}-\mathbf{r'}|/c[/math], when it emitted a light signal which has now reached [math]q[/math] at position [math]\mathbf{r}[/math] and time [math]t[/math]
|
See also
Site map
HQ ● Glossary ● April 2016 Presentation