Difference between revisions of "Functions composed of Physical Expressions"
(→Lorentz Force for (q,q')) |
(→Lorentz Force for (q,q')) |
||
Line 67: | Line 67: | ||
|+ First term in the brackets | |+ First term in the brackets | ||
|- | |- | ||
− | |width=240 valign=top align=center| <math>\frac{ ∂\left[ \frac{1}{|\mathbf{r}-\mathbf{r'}|} \right] }{∂t}</math><br> | + | |width=240 valign=top align=center| <math>\frac{ ∂\left[ \frac{1}{|\mathbf{r}-\mathbf{r'}|} \right] }{∂t} =</math><br>The partial derivative, with respect to time <math>t</math>, of the proximity of the position <math>r</math> of <math>q</math> at time <math>t</math> to the position <math>r'</math> of <math>q'</math> at the retarded time <math>t'</math>. |
− | |width=240 valign=top align=center| <math>\frac{∂r'}{∂t}</math><br> | + | |width=240 valign=top align=center| <math>\frac{∂r'}{∂t} =</math><br>According to an observer at time <math>t</math>: the velocity a charge <math>q'</math> had at the retarded time <math>t' = t - |\mathbf{r}-\mathbf{r'}|/c</math>, when it emitted a light signal which has now reached <math>q</math> at position <math>\mathbf{r}</math> and time <math>t</math> |
|} | |} | ||
Line 74: | Line 74: | ||
|+ Second term in the brackets | |+ Second term in the brackets | ||
|- | |- | ||
− | |width=240 valign=top align=center| <math>\frac{1}{|\mathbf{r}-\mathbf{r'}|}</math><br> | + | |width=240 valign=top align=center| <math>\frac{1}{|\mathbf{r}-\mathbf{r'}|} =</math><br>The proximity of the position <math>r</math> of <math>q</math> at time <math>t</math> to the position <math>r'</math> of <math>q'</math> at the retarded time <math>t'</math>. |
− | |width=240 valign=top align=center| <math>\frac{∂^2r'}{∂t^2}</math><br> | + | |width=240 valign=top align=center| <math>\frac{∂^2r'}{∂t^2} =</math><br>According to an observer at time <math>t</math>: the acceleration a charge <math>q'</math> had at the retarded time <math>t' = t - |\mathbf{r}-\mathbf{r'}|/c</math>, when it emitted a light signal which has now reached <math>q</math> at position <math>\mathbf{r}</math> and time <math>t</math> |
|} | |} | ||
Revision as of 01:55, 15 May 2016
Contents
[hide]Functions for a point charge
The electric scalar potential at due to a point charge at is:
The magnetic vector potential at due to a point charge which had a velocity at is:
Functions for an ordered pair of point charges
A charge subject to an electric scalar potential at due to a point charge at has an electric potential energy of:
A charge subject to a magnetic vector potential at due to a point charge which had a velocity at has a potential momentum of:
Lorentz Force for
The Lorentz Force between charges can be derived from the scalar potential and the vector potential .
A charge which has a velocity of at will experience a Lorentz force due to a point charge at of:
The electric field is:
The magnetic field is:
The Lorentz Force can be expressed directly in terms of the potentials:
Where:
- = negative the gradient of the scalar potential .
- = negative the partial derivative of the magnetic vector potential with respect to time .
- = the cross product of the velocity of the charge and the curl of the magnetic vector potential due to charge .
To restate from a previous section, the magnetic vector potential of a charge experienced by a charge is:
Using the product rule, the partial derivative of this with respect to time can be found. For example, the derivative of a product of two variables and with respect to time is:
- .
Therefore, the partial derivative of the magnetic vector potential at due to with respect to time is:
The partial derivative, with respect to time , of the proximity of the position of at time to the position of at the retarded time . |
According to an observer at time : the velocity a charge had at the retarded time , when it emitted a light signal which has now reached at position and time |
The proximity of the position of at time to the position of at the retarded time . |
According to an observer at time : the acceleration a charge had at the retarded time , when it emitted a light signal which has now reached at position and time |
See also
Site map
HQ ● Glossary ● April 2016 Presentation
|