Difference between revisions of "Electromagnetic Potentials"

From S.H.O.
Jump to: navigation, search
Line 10: Line 10:
 
==Draft==
 
==Draft==
  
The field experienced by a charge q' viewed at rest in a static electromagnetic field is:
+
The field experienced by a charge <math>q</math> viewed at rest in a static electromagnetic field is:
  
<math>F_{rest,static} = - \nabla \varphi</math>
+
<math>\mathbf{F}_{rest,static} = - \nabla \varphi</math>
  
The field experienced by a charge q' viewed at rest in a dynamic electromagnetic field is:
+
The field experienced by a charge <math>q</math> viewed at rest in a dynamic electromagnetic field is:
  
<math>F_{rest,dynamic} = - \nabla \varphi - ∂\mathbf{A}/∂t</math>
+
<math>\mathbf{F}_{rest,dynamic} = - \nabla \varphi - ∂\mathbf{A}/∂t</math>
  
The field experienced by a moving charge q' in a dynamic electromagnetic field is:
+
The field experienced by a moving charge q</math> in a dynamic electromagnetic field is:
  
<math>F_{moving,dynamic} = - \nabla \varphi' - ∂\mathbf{A}'/∂t</math>
+
<math>\mathbf{F}_{moving,dynamic} = - \nabla \varphi_q - ∂\mathbf{A}_q/∂t</math>
  
 
Where:
 
Where:
  
* <math>\varphi' = \varphi - \mathbf{v} \cdot A</math> is the scalar potential experienced by the moving charge.
+
* <math>\varphi_q = \varphi - \mathbf{v} \cdot A</math> is the scalar potential experienced by the moving charge.
  
* <math>∂A'/∂t = ∂\mathbf{A}/∂t + (\mathbf{v} \cdot \nabla)\mathbf{A}</math> is the partial time derivative of the magnetic vector potential experienced by the moving charge.
+
* <math>∂ \mathbf{A}_q/∂t = ∂\mathbf{A}/∂t + (\mathbf{v} \cdot \nabla)\mathbf{A}</math> is the partial time derivative of the magnetic vector potential experienced by the moving charge.
  
Substituting per the above, the field experienced by the moving charge q' is:
+
Substituting per the above, the field experienced by the moving charge <math>q'</math> is:
  
<math>F = - \nabla (\varphi-\mathbf{v} \cdot \mathbf{A}) - ∂\mathbf{A}/∂t - (\mathbf{v} \cdot \nabla)\mathbf{A}</math>
+
<math>\mathbf{F} = - \nabla (\varphi-\mathbf{v} \cdot \mathbf{A}) - ∂\mathbf{A}/∂t - (\mathbf{v} \cdot \nabla)\mathbf{A}</math>
  
<math>F = - \nabla \varphi + \nabla (\mathbf{v} \cdot \mathbf{A}) - ∂\mathbf{A}/∂t - (\mathbf{v} \cdot \nabla)\mathbf{A}</math>
+
<math>\mathbf{F} = - \nabla \varphi + \nabla (\mathbf{v} \cdot \mathbf{A}) - ∂\mathbf{A}/∂t - (\mathbf{v} \cdot \nabla)\mathbf{A}</math>
  
 
Using Feynman subscript notation:
 
Using Feynman subscript notation:
Line 50: Line 50:
 
Where:
 
Where:
  
<math>B = \nabla \times \mathbf{A}</math> is the magnetic field.
+
<math>\mathbf{B} = \nabla \times \mathbf{A}</math> is the magnetic field.
  
 
<math>\mathbf{ω}_\mathbf{v} = \nabla \times \mathbf{v}</math> is the angular rate of deflection.
 
<math>\mathbf{ω}_\mathbf{v} = \nabla \times \mathbf{v}</math> is the angular rate of deflection.
Line 56: Line 56:
 
Substituting per the above, the field experienced by the moving charge is:
 
Substituting per the above, the field experienced by the moving charge is:
  
<math>F = - \nabla \varphi - ∂\mathbf{A}/∂t + \mathbf{v} \times \mathbf{B} + (\mathbf{v} \cdot \nabla)\mathbf{A} + \mathbf{A} \times \mathbf{ω}_\mathbf{v} + (\mathbf{A} \cdot \nabla)\mathbf{v} - (\mathbf{v} \cdot \nabla)\mathbf{A}</math>
+
<math>\mathbf{F} = - \nabla \varphi - ∂\mathbf{A}/∂t + \mathbf{v} \times \mathbf{B} + (\mathbf{v} \cdot \nabla)\mathbf{A} + \mathbf{A} \times \mathbf{ω}_\mathbf{v} + (\mathbf{A} \cdot \nabla)\mathbf{v} - (\mathbf{v} \cdot \nabla)\mathbf{A}</math>
  
<math>F = - \nabla \varphi - ∂\mathbf{A}/∂t + \mathbf{v} \times \mathbf{B} + \mathbf{A} \times \mathbf{ω}_\mathbf{v} + (\mathbf{A} \cdot \nabla)\mathbf{v}</math>
+
<math>\mathbf{F} = - \nabla \varphi - ∂\mathbf{A}/∂t + \mathbf{v} \times \mathbf{B} + \mathbf{A} \times \mathbf{ω}_\mathbf{v} + (\mathbf{A} \cdot \nabla)\mathbf{v}</math>
  
 
This field includes the field from Lorentz plus two additional terms:
 
This field includes the field from Lorentz plus two additional terms:
  
<math>F = F_{Lorentz} + \mathbf{A} \times \mathbf{ω}_\mathbf{v} + (\mathbf{A} \cdot \nabla)\mathbf{v}</math>
+
<math>\mathbf{F} = \mathbf{F}_{Lorentz} + \mathbf{A} \times \mathbf{ω}_\mathbf{v} + (\mathbf{A} \cdot \nabla)\mathbf{v}</math>
  
 
<math>(\mathbf{A} \cdot \nabla)\mathbf{v}</math> is the dot product of the magnetic vector potential with the gradient of the velocity field.
 
<math>(\mathbf{A} \cdot \nabla)\mathbf{v}</math> is the dot product of the magnetic vector potential with the gradient of the velocity field.
  
For a velocity field defined in the immediate neighborhood of a moving charge q' at point p, where the local <math>(\nabla_\mathbf{v} \mathbf{A})_p</math> is a tangent vector on \mathbf{A} (the Lie derivative of <math>\mathbf{v}</math> along <math>\mathbf{A}</math>), the above is equivalent to:
+
For a velocity field defined in the immediate neighborhood of a moving charge <math>q'</math> at point <math>p</math>, where the local <math>(\nabla_\mathbf{v} \mathbf{A})_p</math> is a tangent vector on <math>\mathbf{A}</math> (the Lie derivative of <math>\mathbf{v}</math> along <math>\mathbf{A}</math>), the above is equivalent to:
  
<math>(\mathbf{A} \cdot \nabla)\mathbf{v} = |\mathbf{A}|(\nabla_\mathbf{v} \mathbf{A})_p = |\mathbf{a}_\mathbf{v}|\mathbf{a}/|\mathbf{v}|</math>
+
<math>(\mathbf{A} \cdot \nabla)\mathbf{v} = |\mathbf{A}|(\nabla_\mathbf{v} \mathbf{A})_p = |\mathbf{A}_\mathbf{v}|\mathbf{a}/|\mathbf{v}|</math>
  
Where a is the convective acceleration of the charge, which equals:
+
Where <math>\mathbf{a}</math> is the convective acceleration of the charge, which equals:
  
<math>a = (∂\mathbf{v}/∂x)|(∂\mathbf{x}/∂t)|</math>
+
<math>\mathbf{a} = (∂\mathbf{v}/∂x)|(∂\mathbf{x}/∂t)|</math>
  
 
If the charge is taken as a point particle, the convective acceleration is the same as the acceleration.
 
If the charge is taken as a point particle, the convective acceleration is the same as the acceleration.
  
<math>a = ∂²\mathbf{x}/∂t²</math>
+
<math>\mathbf{a} = ∂²\mathbf{x}/∂t²</math>
  
 
<math>\mathbf{A} \times \mathbf{ω}_\mathbf{v}</math> is the cross product of the magnetic vector potential and the angular rate of deflection.
 
<math>\mathbf{A} \times \mathbf{ω}_\mathbf{v}</math> is the cross product of the magnetic vector potential and the angular rate of deflection.
Line 84: Line 84:
 
When fields are static, the field experienced by a moving charge is:
 
When fields are static, the field experienced by a moving charge is:
  
<math>F_{moving,static} = - \nabla \varphi + \mathbf{v} \times \mathbf{B} + \mathbf{A} \times \mathbf{ω}_\mathbf{v} + (\mathbf{A} \cdot \nabla)\mathbf{v}</math>
+
<math>\mathbf{F}_{moving,static} = - \nabla \varphi + \mathbf{v} \times \mathbf{B} + \mathbf{A} \times \mathbf{ω}_\mathbf{v} + (\mathbf{A} \cdot \nabla)\mathbf{v}</math>
  
 
So for the case of static fields, the force on an accelerating charge is:
 
So for the case of static fields, the force on an accelerating charge is:
  
<math>F_{moving,static} = - \nabla \varphi + \mathbf{v} \times \mathbf{B} + \mathbf{A} \times (\mathbf{v} \times \mathbf{a})/|\mathbf{v}|^2 + |\mathbf{a}_\mathbf{v}|\mathbf{a}/|\mathbf{v}|</math>
+
<math>\mathbf{F}_{moving,static} = - \nabla \varphi + \mathbf{v} \times \mathbf{B} + \mathbf{A} \times (\mathbf{v} \times \mathbf{a})/|\mathbf{v}|^2 + |\mathbf{A}_\mathbf{v}|\mathbf{a}/|\mathbf{v}|</math>
  
 
While the power on an accelerating charge q subject to a static field is:
 
While the power on an accelerating charge q subject to a static field is:
  
<math>P_{moving,static} = q (- \nabla \varphi \cdot \mathbf{v} + (\mathbf{v} \times B) \cdot \mathbf{v} + \mathbf{A} \times (\mathbf{v} \times \mathbf{a}) \cdot \mathbf{v}/|\mathbf{v}|^2 + (\mathbf{a} \cdot \mathbf{v})|\mathbf{a}_\mathbf{v}|/|\mathbf{v}|)</math>
+
<math>P_{moving,static} = q \left[- \nabla \varphi \cdot \mathbf{v} + (\mathbf{v} \times B) \cdot \mathbf{v} + \mathbf{A} \times (\mathbf{v} \times \mathbf{a}) \cdot \mathbf{v}/|\mathbf{v}|^2 + (\mathbf{a} \cdot \mathbf{v})|\mathbf{a}_\mathbf{v}|/|\mathbf{v}|\right]</math>
  
<math>P_{moving,static} = q (- \nabla \varphi \cdot \mathbf{v} + \mathbf{A} \times (\hat{\mathbf{v}} \times \mathbf{a}) \cdot \hat{\mathbf{v}} + \mathbf{a} \cdot A_\mathbf{v})</math>
+
<math>P_{moving,static} = q \left[- \nabla \varphi \cdot \mathbf{v} + \mathbf{A} \times (\hat{\mathbf{v}} \times \mathbf{a}) \cdot \hat{\mathbf{v}} + \mathbf{a} \cdot \mathbf{A}_\mathbf{v}\right]</math>
  
 
The force on a moving charge in a changing magnetic field becomes:
 
The force on a moving charge in a changing magnetic field becomes:
  
<math>F = - \nabla \varphi - ∂\mathbf{A}/∂t + \mathbf{v} \times \mathbf{B} + \mathbf{A} \times (\mathbf{v} \times \mathbf{a})/|\mathbf{v}|^2 + |\mathbf{a}_\mathbf{v}|\mathbf{a}/|\mathbf{v}|</math>
+
<math>\mathbf{F} = - \nabla \varphi - ∂\mathbf{A}/∂t + \mathbf{v} \times \mathbf{B} + \mathbf{A} \times (\mathbf{v} \times \mathbf{a})/|\mathbf{v}|^2 + |\mathbf{A}_\mathbf{v}|\mathbf{a}/|\mathbf{v}|</math>
  
 
{{Site map}}
 
{{Site map}}
  
 
[[Category:Function Conjunction]]
 
[[Category:Function Conjunction]]

Revision as of 02:46, 27 June 2016

The basic idea here is that the electromagnetic potentials ϕ and A and their derivatives can be used to derive all electromagnetism.

Draft

The field experienced by a charge q viewed at rest in a static electromagnetic field is:

Frest,static=φ

The field experienced by a charge q viewed at rest in a dynamic electromagnetic field is:

Frest,dynamic=φA/t

The field experienced by a moving charge q</math> in a dynamic electromagnetic field is:

Fmoving,dynamic=φqAq/t

Where:

  • φq=φvA is the scalar potential experienced by the moving charge.
  • Aq/t=A/t+(v)A is the partial time derivative of the magnetic vector potential experienced by the moving charge.

Substituting per the above, the field experienced by the moving charge q is:

F=(φvA)A/t(v)A

F=φ+(vA)A/t(v)A

Using Feynman subscript notation:

(vA)=v(vA)+A(vA)

A(vA)=v××A+(v)A

v(vA)=A××v+(A)v

Substuting for the curl of the vector potential and the curl of the immediate velocity field for a moving charge, we have:

A(vA)=v×B+(v)A

v(vA)=A×ωv+(A)v

Where:

B=×A is the magnetic field.

ωv=×v is the angular rate of deflection.

Substituting per the above, the field experienced by the moving charge is:

F=φA/t+v×B+(v)A+A×ωv+(A)v(v)A

F=φA/t+v×B+A×ωv+(A)v

This field includes the field from Lorentz plus two additional terms:

F=FLorentz+A×ωv+(A)v

(A)v is the dot product of the magnetic vector potential with the gradient of the velocity field.

For a velocity field defined in the immediate neighborhood of a moving charge q at point p, where the local (vA)p is a tangent vector on A (the Lie derivative of v along A), the above is equivalent to:

(A)v=|A|(vA)p=|Av|a/|v|

Where a is the convective acceleration of the charge, which equals:

a=(v/x)|(x/t)|

If the charge is taken as a point particle, the convective acceleration is the same as the acceleration.

a=²x/t²

A×ωv is the cross product of the magnetic vector potential and the angular rate of deflection.

ωv=(v×a)/|v|2

When fields are static, the field experienced by a moving charge is:

Fmoving,static=φ+v×B+A×ωv+(A)v

So for the case of static fields, the force on an accelerating charge is:

Fmoving,static=φ+v×B+A×(v×a)/|v|2+|Av|a/|v|

While the power on an accelerating charge q subject to a static field is:

Pmoving,static=q[φv+(v×B)v+A×(v×a)v/|v|2+(av)|av|/|v|]

Pmoving,static=q[φv+A×(ˆv×a)ˆv+aAv]

The force on a moving charge in a changing magnetic field becomes:

F=φA/t+v×B+A×(v×a)/|v|2+|Av|a/|v|

Site map

HQGlossaryApril 2016 Presentation