Function Conjunction → Functions composed of Physical Expressions
From S.H.O.
Contents
[hide]Functions for a point charge
The electric scalar potential
at due to a point charge at is:
The magnetic vector potential
at due to a point charge which had a velocity at is:
Functions for an ordered pair of point charges
A charge
subject to an electric scalar potential at due to a point charge at has an electric potential energy of:A charge
subject to a magnetic vector potential at due to a point charge which had a velocity at has a potential momentum of:Lorentz Force for
The Lorentz Force between charges
can be derived from the scalar potential and the vector potential .A charge
which has a velocity of at will experience a Lorentz force due to a point charge at of:The electric field
is:The magnetic field
is:The Lorentz Force can be expressed directly in terms of the potentials:
Where:
- = negative the gradient of the scalar potential .
- = negative the partial derivative of the magnetic vector potential with respect to time .
- = the cross product of the velocity of the charge and the curl of the magnetic vector potential due to charge .
To restate from a previous section, the magnetic vector potential of a charge
experienced by a charge is:
The partial derivative of this with respect to time
is:
Where:
- = the velocity of at the retarded time according to an observer at time sharing the same inertial frame as .
- = the acceleration of at the retarded time according to an observer at time sharing the same inertial frame as .
- = the proximity of the position of at time to the position of at the retarded time (i.e. the inverse of the norm of the vector difference between the two position vectors and ).
- = the partial derivative of this proximity with respect to time .
See also
Site map
HQ ● Glossary ● April 2016 Presentation
|